
Selected Solutions for Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, the degree of each node black
node is

� 2, if both children were already black,
� 3, if one child was black and one was red, or
� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In theshortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path fromx to a
descendant leaf has length at least bh.x/. By definition, the longest path fromx
to a descendant leaf has length height.x/. Since the longest path has bh.x/ black
nodes and at least half the nodes on the longest path are black(by property 4),
bh.x/ � height.x/=2, so

length of longest pathD height.x/ � 2 � bh.x/ � twice length of shortest path:

Solution to Exercise 13.3-3

In Figure 13.5, nodesA, B, andD have black-heightk C 1 in all cases, because
each of their subtrees has black-heightk and a black root. NodeC has black-
heightk C 1 on the left (because its red children have black-heightk C 1) and
black-heightkC2 on the right (because its black children have black-heightkC1).



13-2 Selected Solutions for Chapter 13: Red-Black Trees

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

In Figure 13.6, nodesA, B, andC have black-heightk C 1 in all cases. At left and
in the middle, each ofA’s andB ’s subtrees has black-heightk and a black root,
while C has one such subtree and a red child with black-heightk C 1. At the right,
each ofA’s andC ’s subtrees has black-heightk and a black root, whileB ’s red
children each have black-heightk C 1.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

Property 5 is preserved by the transformations. We have shown above that the
black-height is well-defined within the subtrees pictured,so property 5 is preserved
within those subtrees. Property 5 is preserved for the tree containing the subtrees
pictured, because every path through these subtrees to a leaf contributeskC2 black
nodes.

Solution to Problem 13-1

a. When inserting keyk, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pointer propagates up
from the new node to all of its ancestors.

When deleting a node, lety be the node actually removed and´ be the node
given to the delete procedure.

� If ´ has at most one child, it will be spliced out, so that all ancestors of´ will
be changed. (As with insertion, the need for a new child pointer propagates
up from the removed node.)

� If ´ has two children, then its successory will be spliced out and moved
to ´’s position. Therefore all ancestors of both´ andy must be changed.



Selected Solutions for Chapter 13: Red-Black Trees 13-3

Becausé is an ancestor ofy, we can just say that all ancestors ofy must be
changed.

In either case,y’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

b. We assume that we can call two procedures:

� MAKE-NEW-NODE.k/ creates a new node whosekey attribute has valuek
and withleft andright attributesNIL , and it returns a pointer to the new node.

� COPY-NODE.x/ creates a new node whosekey, left, andright attributes have
the same values as those of nodex, and it returns a pointer to the new node.

Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It returnsthe root of the new
tree.

PERSISTENT-TREE-INSERT.T; k/

´ D MAKE-NEW-NODE.k/

new-root D COPY-NODE.T:root/
y D NIL

x D new-root
while x ¤ NIL

y D x

if ´:key < x:key
x D COPY-NODE.x: left/
y: left D x

else x D COPY-NODE.x:right/
y:right D x

if y == NIL

new-root D ´

elseif ´:key < y:key
y: left D ´

else y:right D ´

return new-root

The second is a rather elegant recursive procedure. The initial call should have
T:root as its first argument. It returns the root of the new tree.

PERSISTENT-TREE-INSERT.r; k/

if r == NIL

x D MAKE-NEW-NODE.k/

else x D COPY-NODE.r/

if k < r:key
x: left D PERSISTENT-TREE-INSERT.r: left; k/

else x:right D PERSISTENT-TREE-INSERT.r:right; k/

return x



13-4 Selected Solutions for Chapter 13: Red-Black Trees

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the
length of the path is at mosth, it takesO.h/ time.

Since it allocates a new node (a constant amount of space) foreach ancestor of
the inserted node, it also needsO.h/ space.

d. If there were parent attributes, then because of the new root, every node of the
tree would have to be copied when a new node is inserted. To seewhy, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since therearen nodes, this
change would cause insertion to create�.n/ new nodes and to take�.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search
tree of heighth, like insertion into an ordinary binary search tree, takes worst-
case timeO.h/. A red-black tree hash D O.lg n/, so insertion into an ordinary
red-black tree takesO.lg n/ time. We need to show that if the red-black tree is
persistent, insertion can still be done inO.lg n/ time. To do this, we will need
to show two things:

� How to still find the parent pointers we need inO.1/ time without using a
parent attribute. We cannot use a parent attribute because apersistent tree
with parent attributes uses�.n/ time for insertion (by part (d)).

� That the additional node changes made during red-black treeoperations (by
rotation and recoloring) don’t cause more thanO.lg n/ additional nodes to
change.

Each parent pointer needed during insertion can be found inO.1/ time without
having a parent attribute as follows:

To insert into a red-black tree, we call RB-INSERT, which in turn calls RB-
INSERT-FIXUP. Make the same changes to RB-INSERTas we made to TREE-
INSERT for persistence. Additionally, as RB-INSERT walks down the tree to
find the place to insert the new node, have it build a stack of the nodes it tra-
verses and pass this stack to RB-INSERT-FIXUP. RB-INSERT-FIXUP needs
parent pointers to walk back up the same path, and at any giventime it needs
parent pointers only to find the parent and grandparent of thenode it is working
on. As RB-INSERT-FIXUP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distance away in the stack. Thus,
the parent information can be found inO.1/ time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotate, that node’s
parent, and one of the children of the node around which we rotate). Thus, at
most 6 nodes are directly modified by rotation during RB-INSERT-FIXUP. In
a persistent tree, all ancestors of a changed node are copied, so RB-INSERT-
FIXUP’s rotations takeO.lg n/ time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a singleO.lg n/-length path of
ancestors.)



Selected Solutions for Chapter 13: Red-Black Trees 13-5

� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the “uncles” referred to in the algorithm description). There are
at mostO.lg n/ ancestors, hence at mostO.lg n/ color changes of uncles.
Recoloring uncles doesn’t cause any additional node changes due to persis-
tence, because the ancestors of the uncles are the same nodes(ancestors of
the inserted node) that are being changed anyway due to persistence. Thus,
recoloring does not affect theO.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
timeO.h/.

� We already saw in part (a) thatO.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs inO.h/ time,

analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers we need to walk down the tree tothe node to be
deleted, to build up a stack of parents as discussed above forinsertion. This
is a little tricky if the set’s keys are not distinct, becausein order to find the
path to the node to delete—a particular node with a given key—we have to
make some changes to how we store things in the tree, so that duplicate keys
can be distinguished. The easiest way is to have each key takea second part
that is unique, and to use this second part as a tiebreaker when comparing
keys.

Then the problem of showing that deletion needs onlyO.lg n/ time in a persis-
tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-
FIXUP can be found inO.1/ time (using the same technique as for insertion).

� Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed
above for insertion requiresO.lg n/ time to change nodes due to persistence.
It also doesO.lg n/ color changes, which (as for insertion) take onlyO.lg n/

time to change ancestors due to persistence, because the number of copied
nodes isO.lg n/.


